Statistical Comparison of Laboratory Tests

Daniel Strickman
USDA ARS
National Program Leader, Veterinary, Medical, and Urban
Entomology

<u>Daniel.strickman@ars.usda.gov</u> 301-504-5771

What is a "Repellent"

- The mode of action of various active ingredients is not the same
- Considering all active ingredients that stop biting as "repellents" has confused nomenclature and research
- Active ingredient that alters biting behavior might better be called a "phagomone"
- Product used by public to stop biting better called a "repellent product"

Mosquito Preparation

- Some species adapt to host animal in a few generations
- Provide sugar or not
 - Probably species dependent
 - Best to follow biology (e.g., starve Ae. aegypti, not Culex quinquefasciatus)
- Do not withhold water
- Almost never previously blooded
- Larval nutrition and density have big effects on avidity
- Age affects avidity
- Number of mosquitoes and density in cage affect avidity
- Diel patterns to feeding, even in lab
- Preselection for avidity
- Single exposure to AI can alter behavior for long period

Host Models

Human models

- Common to have 4x variation in subjects
- Systematic gender differences documented
- Systematic racial differences not known
- Many test systems:
 - External cage (cage on arm or leg)
 - Arm in cage

Animal models

- Not currently popular
- Limited studies showing correlation with human data, but overall encouraging
- Duration correlated to humans, but not the same
- Avidity of colony to animal species

Two Kinds of Measurements

- Inherent repellency
 - The minimum mass or molar concentration per surface area that has the desired effect
 - Does not necessarily predict duration because of loss from volatility, absorption, or ablation
- Duration of effectiveness
 - The time between activation and decrease in effect below minimum standard
 - Activation not always same as application

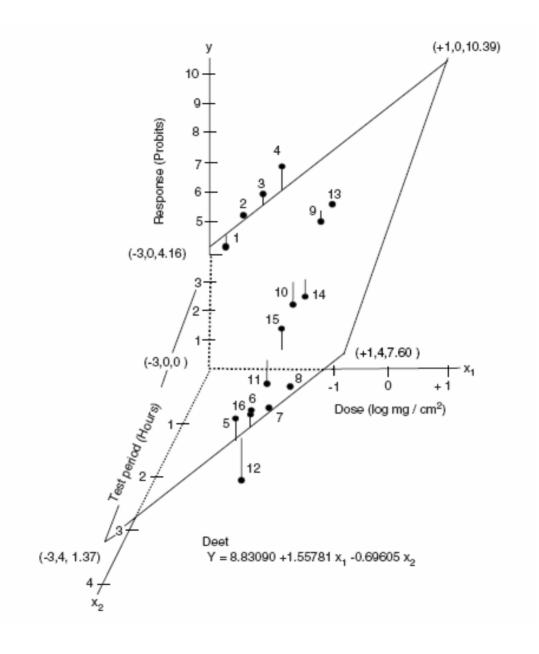
Inherent Repellency

- Compares biting inhibition at various dosages
- Assumes no loss of AI following application, therefore conducted soon after application
- All usually not formulated but solvents vary
- Only realistic method for in vitro tests because no way to model loss of AI from surface
- Based on experience can set threshold at ED₉₀
 ≤ 0.01 mg/cm²
- Useful for prioritizing candidate compounds

Duration of Effectiveness

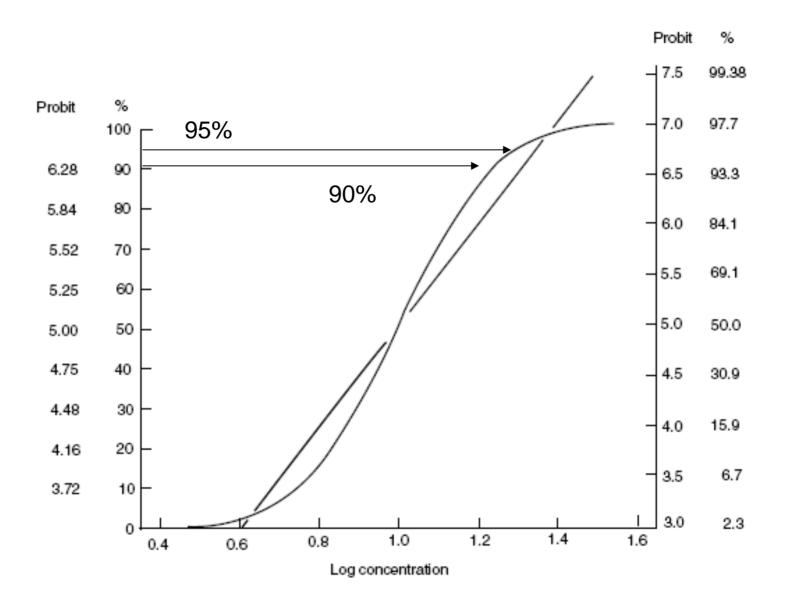
- Field testing and consumer experience are only realistic measures of individual product, but nearly impossible to compare studies for ranking of products
- Mosquito avidity varies over time, much better to apply at intervals, test simultaneously
- Mosquitoes per cage and density makes a big difference in avidity
- Challenge is to reduce experimental error by decreasing variation in mosquito or tick source and in procedure

Application Rate


- Must be on per area basis
 - Can translate old data based on assumptions
 - Advantage of external cage models, but edge effects
- Moles logical chemically, but complicate translation to practical application
- Product formulation influences likely application rate

Percentage Efficacy Observed

- Highly dependent on number of potential biting arthropods in test
- If only 10 in a cage, then first bite lowers efficacy from 100% to 90%
- If 200 in cage, then first bite lowers efficacy from 100% to 99.5%
- If number of potential biting arthropods not reported, then assume 95% at first bite


Probit Regression

- Probit defined: "inverse cumulative distribution function of the normal distribution"
- If test stopped at first bite, then impossible to do probit regression.
- If test stopped at first bite, translate percentage protection at first bite to standard percentage protection by probit extrapolation
- If test proceeded to greater failure rate (ideally at least 50%), then possible to perform proper regression with error rate

What is "Best" Percentage Protection

- Inherent statistical accuracy of probit curve is optimum at ET₅₀
- ET₉₅ gets into top, curvy part of sigmoid curve
- ET₉₀ is closer to linear portion of sigmoid curve
- ET₉₀ is more realistic appraisal of efficacy

Comparison of 10% and 30% Al Formulations

- Standardizes comparisons at typical low dose and high dose formulations
- Compare 10% against threshold of onehour of protection
- Compare 30% against threshold of twohours of protection
- Compares active ingredients, not products

Net Result

Study's % translated to ET₉₀ by probit ratio; translated to standard Al % by log ratio

TABLE 22.1

Efficacy of Dimethyl Phthalate (DMP) Measured by Duration of Protection Against a Variety of Biting Arthropods

Lab	Field	Species	Method	Control	Dose	Result	10% Calc.	30% Calc.
	х	Haemadipsa zeylandica	Homan	14-22/h	0.25	1.5	1.2	2.8
	х	Haemadipsa zeylandica	Human	14-22/h	0.5	2.5	1	2.4
х		Panstrongylus megistus	Rabbit, ec	10	1.54	2.2	0.3	1.2
x		Aedes aegypti	Arm in cage	100	0.385	0.7	0.4	1
X		Aedes aegypti	Arm in cage	NS	0.25	1.1	0.8	2.1

Summary Recommendations

- Ignore inherent repellency, use duration
- Quantify application
 - Preliminary study of actual application rate
 - Standardize tests at mean application rate (consider mean minus 10%)
- Standardize strain, rearing, and preparation of test arthropods; preselect for avidity; do not reuse specimens
- Use 50/50 gender ratio of subjects; stagger application times and test simultaneously
- Replicate with same subjects on different days
- Arm in cage, 100 mosquitoes per cage
- Sixteen tests: 30 minute intervals for 8 hours
- For new study, calculate ET₉₀
- For existing study, calculate ET₉₀ from reported percentage protection using probit ratio